

Welcome to kisee’s documentation!

Contents:

	Installing
	Installing kisee

	Configuring HTTPS using nginx with certbot

	Testing your instance

	Features
	Overview

	The backend interface

	Configuration File
	Example

	Sentry

	Kisee API

	Contributing
	Quickstart

	Internals

	Releasing

	FAQ
	Can I use Kisee to query an OAuth2 service?

	Does Kisee implement groups?

	Does Kisee implement impersonation?

	Does Kisee expose self-service registration?

	Does Kisee expose a password reset feature?

Indices and tables

	Index

	Module Index

	Search Page

Installing

Installing kisee

First start by building a venv, let’s say /tmp/kisee for the
example, but please find it a better place:

python3 -m venv /tmp/kisee

and activate it:

/tmp/kisee/bin/activate

To install kisee, run:

pip install kisee

Quickstart a settings file:

kisee-quickstart

Run it once manually to test it:

kisee # or python -m kisee

This will start a server on port 8140, you can kill it and now
configure systemd to start it.

In a file like /etc/systemd/system/kisee.service, copy:

[Unit]
Description=Kisee
After=network.target

[Service]
Type=simple
ExecStart=/tmp/kisee/bin/python -m kisee
WorkingDirectory=/home/kisee/kisee-19.07.0/

Restart=on-abort
User=kisee
Group=kisee

[Install]
WantedBy=multi-user.target

Then reload systemd config, enable it and start it:

systemctl daemon-reaload
systemctl enable kisee
systemctl start kisee

Configuring HTTPS using nginx with certbot

Using nginx as a front-end for kisee may be a good idea,
typically at least for HTTPS decapsulation.

First install nginx and certbot:

apt install nginx certbot python3-certbot-nginx

First generate a nice dhparam if needed:

[-f /etc/ssl/certs/dhparam.pem] || openssl dhparam -out /etc/ssl/certs/dhparam.pem 4096

Make sure your domain resolves correcly to the machine, and generate
the certificate (replace EXAMPLE.COM in the command, if nginx is
running, replace –standalone with –nginx):

DOMAIN=EXAMPLE.COM; certbot certonly --cert-name $DOMAIN -n --agree-tos -d $DOMAIN \
 -m admin@$DOMAIN --standalone --rsa-key-size 4096

Create the nginx TLS snippet (replace EXAMPLE.COM) in
/etc/nginx/snippets/letsencrypt-EXAMPLE.COM.conf like this

ssl_ciphers "ECDHE-RSA-AES256-GCM-SHA384:ECDHE-RSA-AES256-SHA384:DHE-RSA-AES256-GCM-SHA384:DHE-RSA-AES256-SHA256:ECDHE-RSA-AES128-GCM-SHA256:DHE-RSA-AES128-GCM-SHA256:AES256+EECDH:AES256+EDH";
ssl_protocols TLSv1.1 TLSv1.2;

ssl_prefer_server_ciphers on;
ssl_session_cache shared:ssl_session_cache:10m;
ssl_certificate /etc/letsencrypt/live/EXAMPLE.COM/fullchain.pem;
ssl_certificate_key /etc/letsencrypt/live/EXAMPLE.COM/privkey.pem;
ssl_dhparam /etc/ssl/certs/dhparam.pem;

Make sure installer and authenticator are set to nginx in
/etc/letsencrypt/renewal/EXAMPLE.COM.conf, in the
[renewalparams] section. installer may not exist, if so create
it near the authenticator one.

Finally configure nginx like this (again, replace EXAMPLE.COM):

server
{
 listen 80;
 server_name EXAMPLE.COM;

 return 301 https://$server_name$request_uri;
}

server
{
 listen 443 ssl;
 server_name EXAMPLE.COM;

 include snippets/letsencrypt-EXAMPLE.COM.conf;

 location /
 {
 proxy_pass http://127.0.0.1:8140;
 proxy_set_header Host $host;
 proxy_set_header X-Forwarded-For $remote_addr;
 proxy_set_header X-Forwarded-Protocol $scheme;
 }
}

Testing your instance

To check if your instance is running, just curl on it, over HTTPS from
the outside:

curl https://kisee.example.com

this should give you the json-home of kisee, like this:

{
 "api": {
 "title": "Identification Provider",
 "links": {
 "author": "mailto:julien@palard.fr",
 "describedBy": "https://kisee.readthedocs.io"
 }
},
[...]

Features

Overview

Kisee is an API giving JWTs in exchange for valid usernames/password
pairs. That’s it.

Kisee is better used as a backend of the
Pasee [https://github.com/meltygroup/pasee/] identity manager: Pasee
handle groups and can handle multiple identity backends (one or many
Kisee instances, twitter, facebook, …).

Kisee can use your existing database (or use a dedicated one) to query
the username and passwords if you’re willing to implement a simple
Python class to query it, so Kisee can query anything: LDAP, a flat
file, a PostgreSQL database with a strange schema, whatever.

The backend interface

The backend class used by Kisee must implement the
kisee.identity_provider.IdentityProvider ABC, meaning the following methods like:

async def identify(self, username: str, password: str) -> Optional[User]:
 """Identifies the given username/password pair, returns a dict if found.
 """

By implementing the backend ABC, you can make your kisee instance
use your own backend: your own database schema, or anything storing
your usernames and passwords.

To use your backend, specify it in settings.toml like this:

[identity_backend]
 class = "impart.path.to.your.backend.Class"
 [identity_backend.options]
 no = "option required"

The options dictionary will be passed as a options parameter
of your backend. This is were you store typically the hostname,
username, and password of your database if any, or path of your
backend file, whatever needed.

Configuration File

Example

A typical settings.toml file looks like this:

[server]
host = "0.0.0.0"
hostname = "http://localhost:8140"
port = 8140
debug = true

[identity_backend]
 class = "kisee.providers.demo.DemoBackend"
 [identity_backend.options]
 no = "option required"

[email]
 host = "localhost"
 sender = "sender@example.com"

[jwt]
 iss = "example.com"

 # Generated using:
 #
 # openssl ecparam -name secp256k1 -genkey -noout -out secp256k1.pem
 #
 # Yes we know P-256 is a bad one, but for compatibility with JS
 # clients for the moment we can't really do better.
 private_key = '''
-----BEGIN EC PRIVATE KEY-----
MHQCAQEEIJJaLOWE+5qg6LNjYKOijMelSLYnexzLmTMvwG/Dy0r4oAcGBSuBBAAK
oUQDQgAEE/WCqajmhfppNUB2uekSxX976fcWA3bbdew8NkUtCoBigl9lWkqfnkF1
8H9fgG0gafPhGtub23+8Ldulvmf1lg==
-----END EC PRIVATE KEY-----'''

 # Generated using:
 # openssl ec -in secp256k1.pem -pubout > secp256k1.pub
 public_key = '''
-----BEGIN PUBLIC KEY-----
MFYwEAYHKoZIzj0CAQYFK4EEAAoDQgAEE/WCqajmhfppNUB2uekSxX976fcWA3bb
dew8NkUtCoBigl9lWkqfnkF18H9fgG0gafPhGtub23+8Ldulvmf1lg==
-----END PUBLIC KEY-----'''

Sentry

Sentry is optional.

For Sentry to work you’ll need the SENTRY_DSN environment variable,
and sentry-sdk installed, that’s it.

Kisee API

The Kisee API exposes the following resources:

	A json-home on /

	/jwt/ to manage tokens (mainly create a new one by POSTing)

	/password_recoveries/ to initiate a password lost procedure and manage it.

	POST /users/ for self-service registration.

Contributing

Quickstart

To install dev dependencies, create a venv and run:

pip install -r requirements-dev.txt
pip install -e .
cp example-settings.toml settings.toml

And run kisee in development mode using:

adev runserver kisee/kisee.py

Internals

The Kisee daemon does not store (username, password) tuples, but uses
a Python class, a backend you can choose in settings.toml to
handle the actual storage..

Kisee provides some demo backends and test backends so you can
play with them. You can provide your own backend to hit your own
database, your LDAP server, or another IdP as needed.

Releasing

Our version scheme is calver [https://calver.org/], specifically
YY.MM.MICRO, so please update it in kisee/__init__.py (single
place), git tag, commit, and push.

Then to release:

git clean -dfqx
python -m build --sdist --wheel .
twine upload dist/*

FAQ

Can I use Kisee to query an OAuth2 service?

Kisee is an identity provider, like twitter or github, so they’re side
by side, not one on top of the other, they play the same role. You can
however use Pasee [https://github.com/meltygroup/pasee] on top of
Kisee and Twitter for example.

Does Kisee implement groups?

No, Kisee doesn’t care about your groups like Github don’t care about
your groups, they’re both just here to say “yes, it’s this user” or
“no, it is not”.

From the Pasee [https://github.com/meltygroup/pasee] point of view you’ll be able to tell:

	User foo from Kisee is in group staff

	User bar from Github is in group staff too

Does Kisee implement impersonation?

No, if we do implement this we’ll probably do in Pasee [https://github.com/meltygroup/pasee] to rely on
Pasee [https://github.com/meltygroup/pasee] groups to tell who can impersonate.

Does Kisee expose self-service registration?

Optionally, only if you implement it or use a backend class
implementing it.

Does Kisee expose a password reset feature?

Yes, by sending an email that you can template in the settings.

Index

 _static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Welcome to kisee’s documentation!

 		
 Installing

 		
 Installing kisee

 		
 Configuring HTTPS using nginx with certbot

 		
 Testing your instance

 		
 Features

 		
 Overview

 		
 The backend interface

 		
 Configuration File

 		
 Example

 		
 Sentry

 		
 Kisee API

 		
 Contributing

 		
 Quickstart

 		
 Internals

 		
 Releasing

 		
 FAQ

 		
 Can I use Kisee to query an OAuth2 service?

 		
 Does Kisee implement groups?

 		
 Does Kisee implement impersonation?

 		
 Does Kisee expose self-service registration?

 		
 Does Kisee expose a password reset feature?

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/up.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

